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LETTER TO THE EDITOR 

A group-theoretical derivation of the Hughes-Yadegar 
algebra 

Nigel Backhouse 
Department of Applied Mathematics and Theoretical Physics, Liverpool University, PO 
Box 147, Liverpool L69 3BX, UK 

Received 17 November 1976 

Abstract. A group-theoretical derivation is given of the Hughes-Yadegar algebra, 
0(3),,(Tz x T ~ ) ,  and its representations, which shows in particular how the O(4) algebra, the 
symmetry algebra of the hydrogen atom, arises naturally. 

1. Introduction 

In a recent paper (Hughes and Yadegar 1976), an analysis was made of the irreducible 
unitary representations (IUR) of a seven-dimensional algebra, denoted 0(3),(T2 X T2). 
This algebra was constructed from the O(3) algebra together with two mutually 
commuting Abelian algebras T2 and T2 which carry the spin-4 representation of the 
O(3) algebra. The interesting feature of the algebra is that it possesses IUR which, in a 
certain sense, contain the bound state hydrogenic IUR of the O(4) algebra. 

The purpose of the present letter is threefold: ( a )  to relate the Hughes-Yadegar 
algebra to the Lie algebra of a Lie group, denoted SU(2),R4; (b) by using the method of 
induced representations to obtain the IUR of the algebra as operators on the space of 
square-integrable functions on the sphere S 3 ;  (c) to explain the success of the algebra in 
relation to the hydrogen atom by noting how the O(4) algebra naturally fits in with the 
group scheme. 

2. The group SU(2),,R4 and its Lie algebra 

In order to form the semi-direct product of SU(2) with R4 we exploit the well known 
homomorphism of SU(2) X SU(2) onto SO(4) (see, for example, Talman 1960). We 
consider the set of all 2 x 2 complex matrices of the form 

where (Y = 7 + ia, p = Y + ip  and (p, v, a, 7) E R4. We can check that if v E SU(2) then 
the matrix product vm=m’ has the same form as m. This gives a linear length- 
preserving action of SU(2) on the additive group R4 which embeds SU(2) into SO(4). 
Now the group SU(2),,R4 is the multiplicative group of all 4 X 4 matrices 
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where v E SU(2) and m is a 2 x 2 matrix of the form defined above. Evidently SU(2),R4 
is a subgroup of the Euclidean group in four dimensions. 

The Lie algebra of SU(2),R4 is obtained by differentiating the matrices with respect 
to suitable parameters. We find the following generators: 

A2=(tiaz ’) A3=(fiu3 0) 
0 0 ’  0 0  

(1) 
0 i a l  0 -ia2 0 i a 3  

are the Pauli matrices. Now define the following complex linear combinations of the 
generators: 

L*=*A,+iAl, Lo= -iAJ 

01 =$(T,-iT,) Q-4 =$(T,-iT,) 

dt= -$(T,+iT,) 0-4 = $( T, + iTu). 
- 

We can write these quite explicitly in terms of the basic 4 x 4 unit matrices: if E,s is the 
4 X 4 matrix with one in the (rs) position and zero elsewhere, for r, s = 1 , 2 , 3 , 4 ,  then we 
findL+=E12,L-=Ezl,Lo=~(Ell-E2z),Q~ =E13,Q-- f=EZ3,~~=E14,~-~=E24.1t  
is clear that the Q commute. The other commutation rules are: 

[L,, L-] = 2L0 
(2) 

[Lo, L*1= fL*, 

[Lo, Q*~I=*+Q*A, [L*, Q-41= Q * h ,  
(-) (-) (-) (-) 

which are precisely the commutation rules for the Hughes-Yadegar algebra. So the 
latter appears as a real subalgebra of the complexification of the Lie algebra of the Lie 
group SU(2),R4. 

3. IUR of SU(2),R4 

In Hughes and Yadegar (1976) the IUR of 0(3),(TZ X T z )  were computed using shift 
operator techniques. We use another method here, namely the theory of group 
representations as applied to semi-direct product groups. First note that a unitary 
representation U of the group SU(2),R4 gives rise to a representation of the infinitesi- 
mal generators by skew-Hermitian operators. It quickly follows that 

U(LO)+ = U(Lo), U(L,)+ = U ( L A  U(Q*rIt = U(&). (3) 
These Hermiticity conditions differ slightly from those given in equation (2) of Hughes 
and Yadegar (1976). However, Hughes (1976, private communication) informs me 
that the above conditions (3) are now favoured. This has the consequence that the 
Casimir invariant X = 01 0-4 - Q-4 64 is a negative definite Hermitian operator in the 
representation. 

The IUR of SU(2),,R4 can be determined using Mackey’s method of induced 
representations for regular semi-direct product groups based on the linear characters of 
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the normal Abelian subgroup R4 (see Mackey 1968). Denote by,yk, k = (kly k2,  k3,  k4), 
the linear character of R4 whose value at m E R4 is exp [i(klp + k2u + k 3 a  + k47)]. It can 
be checked that the action of SU(2) on the dual space €L, (the space of linear characters) 
is transitive on the spheres k . k = constant. It is convenient to take the point (A, 0, 0,O) 
as the representative point on the orbit k . k = A*. Then the little CO-group associated 
with this point is SU(2) if A =O,  but trivial otherwise. An IUR of SU(2)hR4 which 
corresponds to A = 0 is composed of an IUR of SU(2) and the trivial representation of 
R4. X is the zero operator in this representation. The Mackey theory tells us that the 
induced representations U^ = ,y(A*O*O*O) t SU(2)aR4 are irreducible for A # 0 and, 
furthermore, we obtain a representative from each of the remaining equivalence classes 
of IUR by considering all A > 0. 

The induced representation U^ is defined on the space of all complex-valued 
square-integrable functions on (SU(2),R4)/R4 = SU(2). The action is as follows: let 
f~ L’(SU(2)) then 

maps f to f’ where f’(w) = ,ycA’o’opo’(wm)f(wv) for all w E SU(2). In particular, putting 
rn = 0, we get the regular representation of SU(2). To get a more concrete realization 
we first note that the group manifold SU(2) is homeomorphic to the sphere S3. Using 
the coordinates ( p, U, U, T )  for the four-space in which the sphere p2  + u2 +U’ + T’ = 1 is 
embedded we find that the Q are represented by the multiplication operators 

U^ (Qa) = ;A (U + ip), 

U^ (04) =$A (T +iu), 

U^(Q-r)=$A(T-iu), 

U^(d-i)  =;A (- u +ip). 
(4) 

The Casimir invariant X assumes the value -h2/4 on Lz(S3). The SU(2) generators are 
represented by the following differential operators: 

a a  UA(A2) 

Note that these operators are independent of A. 
In the definition of U* we used a right action of SU(2) on L2(S3). There is also a 

natural left action given by v: f+f  where f’(w) =f(v-’w) for v, w E SU(2). If we 
denote the generators of this new SU(2) group by A i, A 1, AS then in the representation 
we find 
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These Gifferential operators can be derived in another way. In fact if we evaluate the 
operator Yo = Y , / X  (see (6) of Hughes and Yadegar 1976) using (4), (5) above, we get 
the same expression as U^ (Ai).  The other expressions are obtained similarly. Thus the 
fact that Hughes and Yadegar were able to find another O(3) algebra in the universal 
enveloping algebra of 0(3),,(T2 x T2) is just a reflection of the existence of the second 
action of SU(2). Together, the left and right actions of SU(2) give a representation of 
SU(2) x SU(2), the covering group of S0(4), on L2(S3). 

We have remarked that the restriction to SU(2) of U^ is the regular representation. 
We can also restrict U* to the diagonal subgroup of SU(2) X SU(2)-this in fact gives a 
single-valued representation of SO(3). It is well known that this representation is the 
hydrogenic representation O(D'OD'), summed over all IUR DJ of SU(2) for i =  

action are 
0 ' 1 '  , 2 ,  , 2, . . . (see Backhouse and Gard 1976). The infinitesimal generators of this 

a a  
ac+ av u^(A,)+ u^(A;) = 

a a 
aw a u  U^(A,)+ U ^ ( A ~ ) = u - - p - ,  (7) 

a a  
u^(A,)+u^(A;)= Y - P - .  a p  av 

These resemble the angular momentum operators in three-space. The complemen- 
tary operators do not close under commutation, so do not generate a group. Indeed, 
they obey the same commutation rules as the components of the Runge-Lenz vector, 
which arises in the context of the hydrogen atom problem. 

4. Conclusions 

We have written down the group behind the algebra 0(3),+(T2 x T2) and shown how its 
IUR can be obtained. We recall from the work of Fock, as expounded and expanded by 
Bander and Itzykson (1966), that the accidental degeneracy of the hydrogen atom 
spectrum can be explained by first transforming into three-momentum space and then 
stereographically projecting onto the O(4) invariant sphere S3 in four-space. Our 
approach reconstructs this sphere with a natural group action and so explains the 
success of the Hughes-Yadegar algebra in relation to the hydrogenic bound state 
wavefunctions. 

Our differential operator expressions for the actions of the generators on L2(S3) are 
currently being investigated by Hughes (1976, private communication) as a tool for the 
evaluation of matrix elements, between hydrogenic wavefunctions, of certain 
operators-in particular the momentum operators. 
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